UCL#

class pymovements.datasets.UCL(name: str = 'UCL', long_name: str = 'University College London corpus', mirrors: dict[str, Sequence[str]] = <factory>, resources: ResourceDefinitions = <factory>, experiment: Experiment | None = <factory>, extract: dict[str, bool] | None = None, custom_read_kwargs: dict[str, Any] = <factory>, column_map: dict[str, str] = <factory>, trial_columns: list[str] | None = None, time_column: str | None = None, time_unit: str | None = None, pixel_columns: list[str] | None = None, position_columns: list[str] | None = None, velocity_columns: list[str] | None = None, acceleration_columns: list[str] | None = None, distance_column: str | None = None, filename_format: dict[str, str] | None = None, filename_format_schema_overrides: dict[str, dict[str, type]] | None = None)[source]#

UCL dataset [Frank et al., 2013].

UCL is a dataset of word-by-word reading times collected through self-paced reading and eye-tracking experiments to evaluate computational psycholinguistic models of English sentence comprehension. 361 sentences from narrative sources, ensuring they were understandable without context, and recorded reading times from participants using both methods.

For more details check out the original paper [Frank et al., 2013].

name#

The name of the dataset.

Type:

str

long_name#

The entire name of the dataset.

Type:

str

resources#

A list of dataset gaze_resources. Each list entry must be a dictionary with the following keys: - resource: The url suffix of the resource. This will be concatenated with the mirror. - filename: The filename under which the file is saved as. - md5: The MD5 checksum of the respective file.

Type:

ResourceDefinitions

filename_format#

Regular expression which will be matched before trying to load the file. Namedgroups will appear in the fileinfo dataframe.

Type:

dict[str, str] | None

filename_format_schema_overrides#

If named groups are present in the filename_format, this makes it possible to cast specific named groups to a particular datatype.

Type:

dict[str, dict[str, type]] | None

column_map#

The keys are the columns to read, the values are the names to which they should be renamed.

Type:

dict[str, str]

custom_read_kwargs#

If specified, these keyword arguments will be passed to the file reading function.

Type:

dict[str, Any]

Examples

Initialize your Dataset object with the UCL definition:

>>> import pymovements as pm
>>>
>>> dataset = pm.Dataset("UCL", path='data/UCL')

Download the dataset resources:

>>> dataset.download()

Load the data into memory:

>>> dataset.load()

Methods

__init__([name, long_name, mirrors, ...])

from_yaml(path)

Load a dataset definition from a YAML file.

to_dict(*[, exclude_private, exclude_none])

Return dictionary representation.

to_yaml(path, *[, exclude_private, exclude_none])

Save a dataset definition to a YAML file.

Attributes

acceleration_columns

distance_column

extract

filename_format

filename_format_schema_overrides

has_resources

Checks for resources in resources.

long_name

name

pixel_columns

position_columns

time_column

time_unit

trial_columns

velocity_columns

resources

column_map

custom_read_kwargs

mirrors

experiment