FakeNewsPerception#

class pymovements.datasets.FakeNewsPerception(name: str = 'FakeNewsPerception', long_name: str = 'Fake News Perception Eye Tracking Corpus', mirrors: dict[str, Sequence[str]] = <factory>, resources: ResourceDefinitions = <factory>, experiment: Experiment = <factory>, extract: dict[str, bool] | None = None, custom_read_kwargs: dict[str, Any] = <factory>, column_map: dict[str, str] = <factory>, trial_columns: list[str] | None = None, time_column: str | None = None, time_unit: str | None = None, pixel_columns: list[str] | None = None, position_columns: list[str] | None = None, velocity_columns: list[str] | None = None, acceleration_columns: list[str] | None = None, distance_column: str | None = None, filename_format: dict[str, str] | None = None, filename_format_schema_overrides: dict[str, dict[str, type]] | None = None)[source]#

FakeNewsPerception dataset [Sümer et al., 2021].

FakeNewsPerception dataset consists of eye movements during reading, perceived believability scores, and questionnaires including Cognitive Reflection Test (CRT) and News-Find-Me (NFM) perception, collected from 25 participants with 60 news items. Eye movements are recorded to provide objective measures of information processing during news reading.

For more details see [Sümer et al., 2021].

name#

The name of the dataset.

Type:

str

long_name#

The entire name of the dataset.

Type:

str

resources#

A list of dataset gaze_resources. Each list entry must be a dictionary with the following keys: - resource: The url suffix of the resource. This will be concatenated with the mirror. - filename: The filename under which the file is saved as. - md5: The MD5 checksum of the respective file.

Type:

ResourceDefinitions

experiment#

The experiment definition.

Type:

Experiment

filename_format#

Regular expression which will be matched before trying to load the file. Namedgroups will appear in the fileinfo dataframe.

Type:

dict[str, str] | None

filename_format_schema_overrides#

If named groups are present in the filename_format, this makes it possible to cast specific named groups to a particular datatype.

Type:

dict[str, dict[str, type]] | None

column_map#

The keys are the columns to read, the values are the names to which they should be renamed.

Type:

dict[str, str]

custom_read_kwargs#

If specified, these keyword arguments will be passed to the file reading function.

Type:

dict[str, Any]

Methods

__init__([name, long_name, mirrors, ...])

from_yaml(path)

Load a dataset definition from a YAML file.

to_dict(*[, exclude_private, exclude_none])

Return dictionary representation.

to_yaml(path, *[, exclude_private, exclude_none])

Save a dataset definition to a YAML file.

Attributes

acceleration_columns

distance_column

extract

filename_format

filename_format_schema_overrides

has_resources

Checks for resources in resources.

long_name

name

pixel_columns

position_columns

time_column

time_unit

trial_columns

velocity_columns

resources

experiment

column_map

custom_read_kwargs

mirrors