MECOL2W1#
- class pymovements.datasets.MECOL2W1(name: str = 'MECOL2W1', long_name: str = 'Multilingual Eye-tracking Corpus second language reader first wave', mirrors: dict[str, Sequence[str]] = <factory>, resources: ResourceDefinitions = <factory>, experiment: Experiment | None = <factory>, extract: dict[str, bool] | None = None, custom_read_kwargs: dict[str, dict[str, Any]] = <factory>, column_map: dict[str, str] = <factory>, trial_columns: list[str] = <factory>, time_column: str | None = None, time_unit: str | None = None, pixel_columns: list[str] | None = None, position_columns: list[str] | None = None, velocity_columns: list[str] | None = None, acceleration_columns: list[str] | None = None, distance_column: str | None = None, filename_format: dict[str, str] | None = None, filename_format_schema_overrides: dict[str, dict[str, type]] | None = None)[source]#
MECOL2W1 dataset [Kuperman et al., 2023].
This dataset includes eye tracking data from several participants in a single session. The participants read several paragraphs of texts.
The participant is instructed to read texts and answer questions.
Check the respective paper for details [Kuperman et al., 2023].
- name#
The name of the dataset.
- Type:
str
- long_name#
The entire name of the dataset.
- Type:
str
- resources#
A list of dataset gaze_resources. Each list entry must be a dictionary with the following keys: - resource: The url suffix of the resource. This will be concatenated with the mirror. - filename: The filename under which the file is saved as. - md5: The MD5 checksum of the respective file.
- Type:
- filename_format#
Regular expression which will be matched before trying to load the file. Namedgroups will appear in the fileinfo dataframe.
- Type:
dict[str, str] | None
- filename_format_schema_overrides#
If named groups are present in the filename_format, this makes it possible to cast specific named groups to a particular datatype.
- Type:
dict[str, dict[str, type]] | None
- trial_columns#
The name of the trial columns in the input data frame. If the list is empty or None, the input data frame is assumed to contain only one trial. If the list is not empty, the input data frame is assumed to contain multiple trials and the transformation methods will be applied to each trial separately.
- Type:
list[str]
- column_map#
The keys are the columns to read, the values are the names to which they should be renamed.
- Type:
dict[str, str]
- custom_read_kwargs#
If specified, these keyword arguments will be passed to the file reading function.
- Type:
dict[str, dict[str, Any]]
Examples
Initialize your
Dataset
object with theMECOL2W1
definition:>>> import pymovements as pm >>> >>> dataset = pm.Dataset("MECOL2W1", path='data/MECOL2W1')
Download the dataset resources:
>>> dataset.download()
Load the data into memory:
>>> dataset.load()
Methods
__init__
([name, long_name, mirrors, ...])from_yaml
(path)Load a dataset definition from a YAML file.
to_dict
(*[, exclude_private, exclude_none])Return dictionary representation.
to_yaml
(path, *[, exclude_private, exclude_none])Save a dataset definition to a YAML file.
Attributes
acceleration_columns
distance_column
extract
has_resources
Checks for resources in
resources
.pixel_columns
position_columns
time_column
time_unit
velocity_columns
mirrors
experiment