How to use pymovements in R#
This guide shows how to use pymovements
from R via the reticulate
package.
Install and load reticulate in R#
install.packages("reticulate")
Load the package.
library(reticulate)
Installing pymovements.#
py_install("pymovements")
If this fails, create a dedicated python environment and make sure to point R to it.
Set up a dedicated environment#
Skip this step if you already have an environment containing pymovements
.
1. using reticulate functionality in R#
reticulate::install_miniconda()
pymovements_packages <- c(
"python==3.9",
"pymovements"
)
reticulate::conda_create("pymovements_env", packages = pymovements_packages, pip = TRUE)
2. using terminal#
If you work with Conda:
conda create -n pymovements_env python=3.9 # supported: 3.9–3.13
conda activate pymovements_env
conda install -c conda-forge pymovements
If you prefer virtualenv:
python -m venv pymovements_env
# Activate the environment:
# macOS/Linux:
source pymovements_env/bin/activate
# Windows:
pymovements_env\Scripts\activate
pip install pymovements
Point R to use your Python environment#
If you used Conda:
use_condaenv("pymovements_env", required = TRUE)
If you used virtualenv:
use_virtualenv("pymovements_env", required = TRUE)
Working with pymovements#
Import pymovements as pm
.
pm <- import("pymovements")
Now pymovements should appear as pm
under values in your environment
Access functions and data within python modules and classes via the $
operator
To test, you can proceed with the “pymovements in 10 minutes” tutorial, for example this is how you download the ToyDataset:
dataset = pm$Dataset('ToyDataset', path='data/ToyDataset')
dataset$download()
Now let’s load in the dataset into R and display the found files:
dataset$load()
dataset$fileinfo